Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Vesicles ; 13(2): e12412, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38339765

RESUMEN

The COVID-19 pandemic highlighted the clear risk that zoonotic viruses pose to global health and economies. The scientific community responded by developing several efficacious vaccines which were expedited by the global need for vaccines. The emergence of SARS-CoV-2 breakthrough infections highlights the need for additional vaccine modalities to provide stronger, long-lived protective immunity. Here we report the design and preclinical testing of small extracellular vesicles (sEVs) as a multi-subunit vaccine. Cell lines were engineered to produce sEVs containing either the SARS-CoV-2 Spike receptor-binding domain, or an antigenic region from SARS-CoV-2 Nucleocapsid, or both in combination, and we tested their ability to evoke immune responses in vitro and in vivo. B cells incubated with bioengineered sEVs were potent activators of antigen-specific T cell clones. Mice immunised with sEVs containing both sRBD and Nucleocapsid antigens generated sRBD-specific IgGs, nucleocapsid-specific IgGs, which neutralised SARS-CoV-2 infection. sEV-based vaccines allow multiple antigens to be delivered simultaneously resulting in potent, broad immunity, and provide a quick, cheap, and reliable method to test vaccine candidates.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Vacunas , Animales , Humanos , Ratones , SARS-CoV-2 , Pandemias
2.
Nat Commun ; 14(1): 3292, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369658

RESUMEN

Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination.


Asunto(s)
COVID-19 , Inmunidad Humoral , Humanos , Inhibidores de Puntos de Control Inmunológico , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Complejo Antígeno-Anticuerpo , Anticuerpos Antivirales
3.
PLoS Biol ; 21(2): e3001959, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36735681

RESUMEN

The interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was functionally restricted to SARS-CoV-2 by accessibility. We localized the interaction to the C-terminus of the S1 domain and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Levels of LRRC15 were greatly elevated by inflammatory signals in the lungs of COVID-19 patients. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence that it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Proteínas de la Membrana/metabolismo
4.
iScience ; 26(1): 105862, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590902

RESUMEN

We assessed a cohort of people living with human immunodeficiency virus (PLWH) (n = 110) and HIV negative controls (n = 64) after 1, 2 or 3 SARS-CoV-2 vaccine doses. At all timepoints, PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs). Improved neutralization breadth was seen against the Omicron variant (BA.1) after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global MBC dysfunction. In contrast, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, individuals with low or absent neutralization had detectable functional T cell responses. These PLWH had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3+CD127+CD8+T cells after two doses of SARS-CoV-2 vaccination.

5.
bioRxiv ; 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36380764

RESUMEN

People living with HIV (PLWH) on suppressive antiretroviral therapy (ART) can have residual immune dysfunction and often display poorer responses to vaccination. We assessed in a cohort of PLWH (n=110) and HIV negative controls (n=64) the humoral and spike-specific B-cell responses following 1, 2 or 3 SARS-CoV-2 vaccine doses. PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls at all studied timepoints. Moreover, their neutralization breadth was reduced with fewer individuals developing a neutralizing response against the Omicron variant (BA.1) relative to controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs) and pronounced B cell dysfunction. Improved neutralization breadth was seen after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global, but not spike-specific, MBC dysfunction. In contrast to the inferior antibody responses, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, a subset of PLWH with low or absent neutralization had detectable functional T cell responses. These individuals had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3 + CD127 + CD8 + T cells after two doses of SARS-CoV-2 vaccination, which may compensate for sub-optimal serological responses in the event of infection. Therefore, normalisation of B cell homeostasis could improve serological responses to vaccines in PLWH and evaluating T cell immunity could provide a more comprehensive immune status profile in these individuals and others with B cell imbalances.

6.
Nat Commun ; 13(1): 6716, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385143

RESUMEN

The unprecedented emergence and spread of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, underscores the need for diagnostic and therapeutic technologies that can be rapidly tailored to novel threats. Here, we show that site-specific RNA endonuclease XNAzymes - artificial catalysts composed of single-stranded synthetic xeno-nucleic acid oligonucleotides (in this case 2'-deoxy-2'-fluoro-ß-D-arabino nucleic acid) - may be designed, synthesised and screened within days, enabling the discovery of a range of enzymes targeting SARS-CoV-2 ORF1ab, ORF7b, spike- and nucleocapsid-encoding RNA. Three of these are further engineered to self-assemble into a catalytic nanostructure with enhanced biostability. This XNA nanostructure is capable of cleaving genomic SARS-CoV-2 RNA under physiological conditions, and when transfected into cells inhibits infection with authentic SARS-CoV-2 virus by RNA knockdown. These results demonstrate the potential of XNAzymes to provide a platform for the rapid generation of antiviral reagents.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Viral/genética , Pandemias , Antivirales/farmacología , Antivirales/uso terapéutico
7.
Front Immunol ; 13: 831844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720394

RESUMEN

High salt (NaCl) concentrations are found in a number of tissues under physiological and pathological conditions. Here, we analyzed the effects induced by high salt on the function of human neutrophils. The culture of neutrophils in medium supplemented with high salt (50 mM NaCl) for short periods (30-120 min) inhibited the ability of conventional agonists to induce the production of IL-8 and the activation of respiratory burst. By contrast, exposure to high salt for longer periods (6-18 h) resulted in the activation of neutrophils revealed by the production of high levels of IL-8, the activation of the respiratory burst, and a marked synergistic effect on the production of TNF-α induced by LPS. Increasing osmolarity of the culture medium by the addition of sorbitol or mannitol (100 mM) was shown to be completely unable to stimulate neutrophil responses, suggesting that high sodium but not an increased osmolarity mediates the activation on neutrophils responses. A similar biphasic effect was observed when the function of monocytes was analyzed. Short term exposure to high salt suppressed IL-8 and TNF-α production induced by LPS while culture for longer periods triggered the production of IL-8 but not TNF-α in the absence of LPS stimulation. Contradictory results have been published regarding how high salt modulates neutrophil function. Our results suggest that the modulation of neutrophil function by high salt is strongly dependent on the exposure time.


Asunto(s)
Neutrófilos , Factor de Necrosis Tumoral alfa , Humanos , Interleucina-8/farmacología , Lipopolisacáridos/farmacología , Neutrófilos/patología , Cloruro de Sodio/farmacología , Factor de Necrosis Tumoral alfa/farmacología
8.
Biochem J ; 479(8): 901-920, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35380004

RESUMEN

Diagnostic testing continues to be an integral component of the strategy to contain the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) global pandemic, the causative agent of Coronavirus Disease 2019 (COVID-19). The SARS-CoV-2 genome encodes the 3C-like protease (3CLpro) which is essential for coronavirus replication. This study adapts an in vitro colorimetric gold nanoparticle (AuNP) based protease assay to specifically detect the activity of SARS-CoV-2 3CLpro as a purified recombinant protein and as a cellular protein exogenously expressed in HEK293T human cells. We also demonstrate that the specific sensitivity of the assay for SARS-CoV-2 3CLpro can be improved by use of an optimised peptide substrate and through hybrid dimerisation with inactive 3CLpro mutant monomers. These findings highlight the potential for further development of the AuNP protease assay to detect SARS-CoV-2 3CLpro activity as a novel, accessible and cost-effective diagnostic test for SARS-CoV-2 infection at the point-of-care. Importantly, this versatile assay could also be easily adapted to detect specific protease activity associated with other viruses or diseases conditions.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Antivirales , COVID-19/diagnóstico , Colorimetría , Proteasas 3C de Coronavirus , Oro , Células HEK293 , Humanos , Péptido Hidrolasas , Inhibidores de Proteasas , SARS-CoV-2
9.
PLoS Pathog ; 18(2): e1010265, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143592

RESUMEN

Efforts to define serological correlates of protection against COVID-19 have been hampered by the lack of a simple, scalable, standardised assay for SARS-CoV-2 infection and antibody neutralisation. Plaque assays remain the gold standard, but are impractical for high-throughput screening. In this study, we show that expression of viral proteases may be used to quantitate infected cells. Our assays exploit the cleavage of specific oligopeptide linkers, leading to the activation of cell-based optical biosensors. First, we characterise these biosensors using recombinant SARS-CoV-2 proteases. Next, we confirm their ability to detect viral protease expression during replication of authentic virus. Finally, we generate reporter cells stably expressing an optimised luciferase-based biosensor, enabling viral infection to be measured within 24 h in a 96- or 384-well plate format, including variants of concern. We have therefore developed a luminescent SARS-CoV-2 reporter cell line, and demonstrated its utility for the relative quantitation of infectious virus and titration of neutralising antibodies.


Asunto(s)
Técnicas Biosensibles/métodos , Prueba de COVID-19/métodos , COVID-19/virología , Mediciones Luminiscentes/métodos , Péptido Hidrolasas/análisis , SARS-CoV-2/enzimología , Proteínas Virales/análisis , COVID-19/diagnóstico , Línea Celular , Humanos , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
10.
Nature ; 603(7902): 706-714, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104837

RESUMEN

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Asunto(s)
COVID-19/patología , COVID-19/virología , Fusión de Membrana , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/metabolismo , Internalización del Virus , Adulto , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorocebus aethiops , Convalecencia , Femenino , Humanos , Sueros Inmunes/inmunología , Intestinos/patología , Intestinos/virología , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Mutación , Mucosa Nasal/patología , Mucosa Nasal/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Técnicas de Cultivo de Tejidos , Virulencia , Replicación Viral
11.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051148

RESUMEN

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/virología , Interacciones Huésped-Patógeno/inmunología , Activación de Linfocitos/inmunología , SARS-CoV-2/inmunología , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , COVID-19/diagnóstico , COVID-19/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Estudios Longitudinales , Activación de Linfocitos/genética , Fosforilación Oxidativa , Fenotipo , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Índice de Severidad de la Enfermedad , Transcriptoma
12.
Front Immunol ; 9: 269, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515581

RESUMEN

Interleukin-1ß (IL-1ß), a major pro-inflammatory cytokine, is a leaderless cytosolic protein whose secretion does not follow the classical endoplasmic reticulum-to-Golgi pathway, and for which a canonical mechanism of secretion remains to be established. Neutrophils are essential players against bacterial and fungi infections. These cells are rapidly and massively recruited from the circulation into infected tissues and, beyond of displaying an impressive arsenal of toxic weapons effective to kill pathogens, are also an important source of IL-1ß in infectious conditions. Here, we analyzed if an unconventional secretory autophagy mechanism is involved in the exportation of IL-1ß by these cells. Our findings indicated that inhibition of autophagy with 3-methyladenine and Wortmannin markedly reduced IL-1ß secretion induced by LPS + ATP, as did the disruption of the autophagic flux with Bafilomycin A1 and E64d. These compounds did not noticeable affect neutrophil viability ruling out that the effects on IL-1ß secretion were due to cell death. Furthermore, VPS34IN-1, a specific autophagy inhibitor, was still able to reduce IL-1ß secretion when added after it was synthesized. Moreover, siRNA-mediated knockdown of ATG5 markedly reduced IL-1ß secretion in neutrophil-differentiated PLB985 cells. Upon LPS + ATP stimulation, IL-1ß was incorporated to an autophagic compartment, as was revealed by its colocalization with LC3B by confocal microscopy. Overlapping of IL-1ß-LC3B in a vesicular compartment peaked before IL-1ß increased in culture supernatants. On the other hand, stimulation of autophagy by cell starvation augmented the colocalization of IL-1ß and LC3B and then promoted neutrophil IL-1ß secretion. In addition, specific ELISAs indicated that although both IL-1ß and pro-IL-1ß are released to culture supernatants upon neutrophil stimulation, autophagy only promotes IL-1ß secretion. Furthermore, the serine proteases inhibitor AEBSF reduced IL-1ß secretion. Moreover, IL-1ß could be also found colocalizing with elastase, suggesting both some vesicles containing IL-1ß intersect azurophil granules content and that serine proteases also regulate IL-1ß secretion. Altogether, our findings indicate that an unconventional autophagy-mediated secretory pathway mediates IL-1ß secretion in human neutrophils.


Asunto(s)
Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Neutrófilos/inmunología , Adenina/análogos & derivados , Adenina/farmacología , Adenosina Trifosfato/inmunología , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Línea Celular , Humanos , Lipopolisacáridos/inmunología , Macrólidos/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Vías Secretoras , Serina Proteasas/metabolismo , Wortmanina/farmacología
13.
J Cell Biol ; 209(3): 435-52, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25940347

RESUMEN

During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55(Gag) is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4(+) T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55(Gag) membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55(Gag) with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.


Asunto(s)
Membrana Celular/metabolismo , VIH-1/fisiología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ensamble de Virus/fisiología , Replicación Viral/fisiología , Proteínas de Unión al GTP rab/metabolismo , Transporte Biológico Activo/genética , Membrana Celular/genética , Membrana Celular/virología , Endosomas/genética , Endosomas/metabolismo , Endosomas/virología , Humanos , Células Jurkat , Macrófagos/metabolismo , Macrófagos/virología , Proteínas de la Membrana/metabolismo , Antígenos de Histocompatibilidad Menor , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas rab27 de Unión a GTP
14.
PLoS One ; 8(5): e65031, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23724118

RESUMEN

Streptococcus suis is an emerging zoonotic agent causing meningitis and septicemia. Outbreaks in humans in China with atypical cases of streptococcal toxic shock-like syndrome have been described to be caused by a clonal epidemic S. suis strain characterized as sequence type (ST) 7 by multilocus sequence typing, different from the classical ST1 usually isolated in Europe. Previous in vitro studies showed that Toll-like receptor (TLR) 2 plays a major role in S. suis ST1 interactions with host cells. In the present study, the in vivo role of TLR2 in systemic infections caused by S. suis ST1 or ST7 strains using TLR2 deficient (TLR2(-/-)) mice was evaluated. TLR2-mediated recognition significantly contributes to the acute disease caused by the highly virulent S. suis ST1 strain, since the TLR2(-/-) mice remained unaffected when compared to wild type (WT) mice. The lack of mortality could not be associated with a lower bacterial burden; however, a significant decrease in the induction of pro-inflammatory mediators, as evaluated by microarray, real-time PCR and protein assays, was observed. On the other hand, TLR2(-/-) mice infected with the epidemic ST7 strain presented no significant differences regarding survival and expression of pro-inflammatory mediators when compared to the WT mice. Together, these results show a TLR2-independent host innate immune response to S. suis that depends on the strain.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/inmunología , Choque Séptico/microbiología , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/inmunología , Streptococcus suis/fisiología , Receptor Toll-Like 2/metabolismo , Animales , Bacteriemia/microbiología , Quimiocinas/genética , Quimiocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Choque Séptico/epidemiología , Choque Séptico/inmunología , Infecciones Estreptocócicas/genética , Infecciones Estreptocócicas/microbiología , Streptococcus suis/patogenicidad , Análisis de Supervivencia , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...